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Abstract.  We develop a framework for applying high-order finite element methods 

to singularly-perturbed elliptic and parabolic differential systems that utilizes special qua- 

drature rules to confine spurious effects, such as excess diffusion and non-physical oscilla- 

tions, to boundary and interior layers.  This approach is more suited for use with adaptive 

mesh-refinement and order-variation techniques than other problem-dependent methods. 

Quadrature rules,  developed for two-point convection-diffusion and reaction-diffusion 

problems, are used with finite element software to solve examples involving ordinary and 

partial differential equations.   Numerical artifacts are confined to layers for all combina- 

tions of meshes, orders, and singular perturbation parameters that were tested.  Radau or 

Lobatto quadrature used with the finite element method to solve, respectively, convection- 

and reaction-diffusion problems provide the benefits of the specialized quadrature formulas 

and are simpler to implement. 
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order methods, singular perturbations 
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AMS (MOS) subject classification.  65M20, 65M50, 65M60 

1. Introduction. Beginning with a trial solution of a differential system computed 

on a coarse mesh with a low-order method, an adaptive strategy seeks to obtain a final 

solution satisfying prescribed discretization error criteria as quickly as possible. Tools for 

"enriching" the initial solution are denoted as h-, p-, or r-refinement when, respectively, 

the mesh is refined and coarsened, the order of the method is varied, or the mesh is moved 

to follow evolving phenomena. Enrichment, typically local in space, can be either local or 

global in time to produce, respectively, a local refinement method [1] or a method of lines 

[2]. The most successful adaptive enrichment techniques utilize a combination of the base 

strategies with the particular combination of hp-refinement capable of achieving exponen- 

tial convergence rates [2-7]. 

Singularly-perturbed problems are ideal differential systems for adaptive analysis 

because it is far more efficient to resolve the nonuniform behavior within, e.g., boundary 

layers with nonuniform meshes and methods than with uniform structures. Current tools 

for adaptive analysis, however, lack a requisite robustness when applied to singularly- 

perturbed problems. Symmetric finite difference or finite element methods, commonly 

used with adaptive software, produce spurious oscillations (§2) when applied on a coarse 

mesh. Based on this incorrect solution, a correct error estimation could indicate global 

mesh refinement. While possibly successful, this strategy is far from optimal since 

refinement would most likely be necessary only within layers. "Upwinding" eliminates 

oscillations by adding diffusion, but successful strategies [8] are largely unknown for other 

than convection-diffusion systems. A posteriori error estimates, used to indicate adaptive 

enrichment, have been based on diffusive dominance for both elliptic and parabolic sys- 

tems [9-11]; thus, minimally, their range of applicability is gready diminished when they 

are applied to singularly-perturbed problems. 

With a goal of developing high-order methods that may be used with adaptive hp- 
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refinement to solve singularly-perturbed partial differential systems, we develop a Galerkin 

finite element technique that utilizes special quadrature rules to attain stability (§2-4). 

Utilizing a hierarchical framework [12], the quadrature rules are designed to integrate pro- 

ducts of exponential and polynomial functions to high order.   In this regard, they bear 

some relationship to exponentially-weighted Petrov-Galerkin methods [13]; however, poly- 

nomials are used for both the finite element trial and test spaces.  Thus, the new methods 

can be incorporated within an existing adaptive finite element system with only minor 

alterations.  The singularly-perturbed limit of the derived quadrature rules for convection- 

diffusion systems are Radau integration formulas (§3).  Radau (§3) and Lobatto (§4) qua- 

drature yield stable computational results for, respectively, convection- and reaction- 

diffusion problems for all combinations of the singularly-perturbed parameter, the mesh 

spacing, and the order of the method.  Large errors are confined to elements containing or 

adjacent to layers and may be reduced by either h- or p-refinement.   Convergence rates 

remain optimal in the diffusion limit and, although rates are unknown, accuracy is high in 

the singularly-perturbed limit. 

Quadrature rules are derived for ordinary differential systems and our methods may 

be useful with two-point boundary value problem software [14]. However, our intent is to 

use the derived rules with elliptic and parabolic partial differential systems through, e.g., 

tensor products and method of lines reduction. Thus, after verifying that the specialized, 

Radau, and Lobatto quadrature rules give good results when used with finite element pro- 

cedures to solve ordinary convection-diffusion (§3) and reaction-diffusion (§4) systems, 

the methods are applied to one-dimensional transient (§3) and two-dimensional steady (§5) 

problems. Once again, the results display a robust behavior with large errors confined to 

regions of nonuniform behavior. 0T 

D 
2. Formulation and Background.  We illustrate the quadrature-based finite element ,n  

method for the singularly-perturbed two-point boundary value problem f 

a  + 

A*&ai*te&u,-%y %a8m 
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Lu :=-£«" +c(x)u  +d{x)u =/(*),   a<*<6, (2.1a) 

w(a) = uL,   u(b) = uR, (2.1b,c) 

where ()' := d()/dx. Assume that e > 0 and consider cases when (i) c(x) * 0 or (ii) 

c(x) := 0 and d(x) > 0, x e [a,b]. In the former case, convection dominates diffusion 

when the Reynolds or Peclet number (b - a) max lc(x)/el is large, and the solution of 
J a<x<b 

(2.1) has a boundary layer with thickness inversely proportional to the Peclet number at 

x = a or b when c is, respectively, negative or positive. Reaction dominates diffusion in 

the latter case when (b - a)[max J(x)/e]fe is large, and the solution of (2.1) features 
a<x<b 

boundary layers near both a and b. 

Consider the Galerkin form of (2.1): determine u e H^ satisfying 

B (v ,u) := e(v' ,u ) + (v ,cu ) + (v ,du) = (v J),   for all veH&, (2.2a) 

where 

b 

(y,u) = jv(x)u(x)dx, (2.2b) 
a 

Hi is the usual Sobolev space, and subscripts E or 0 restrict functions to, respectively, 

satisfy (2.1b,c) or trivial versions of (2.1b,c). A finite element problem is constructed 

from (2.2) by introducing a partition 

UN := {a =x0<x{ <--<xN =b } (2.3) 

of[a,b] into iV subintervals; defining a finite-dimensional space 

SN>P = {w e Hl I w(x)e Tpi, x e (x^^), i = 1, 2, •••, N }, (2.4) 

where p := [px, PI,--\PN f and T
P 

is a sPace of polynomials of degree p; and deter- 

mining U G 5^,p satisfying 

B(V,U) = (VJ),   for all VeS$*. (2.5) 

Representing SN'P in terms of a hierarchical basis [12] is convenient, efficient, and 



stable.  Thus, we let 

where 

U(x) = jtc^lix) + Z^cfa?^ 
i=0 i=lk=2 

*}<?)=' 

fa(&x)),    if x e [Xf-iSi) 

$_!($(*)), if x e Cx,- ^I+i),   i = 0, 1, • ■ •, N, 

0, otherwise 

(2.6a) 

(2.6b) 

4>fa) = 
$*($(*)), if x e [Xi.xJi) 

10, otherwise 

W = 

,   fc=2,3,-,p,-,   i = 1,2, ••-,//,     (2.6c) 

LX — Xj_j — X,- 

X,- - Xj_! 

$_!(Ö = (1 - Ö/2,   $i® = (1 + Ö/2, 

(2.7a) 

(2.7b,c) 

fc©W^K^-:?^r 5e[-wl   (2'7d) 

and Pfc© is the Legendre polynomial of degree k. The piecewise linear basis element 

<!>/(*) is associated with the node JC, while the higher-degree basis elements (^(x), 

k = 2, 3,.... p., are associated with the subinterval (xM,*,-). In order to simplify the sub- 

sequent presentation, let 

<D := {(J>/(;c), i = 0, 1, -, N, tf(x), k=2,3, -, Pi, i = 1, 2, -, N }.      (2.8a) 

With trivial Dirichlet boundary conditions, the dimension of SE ,p is 

N 

M=-I + 2>,-. 
i=l 

(2.8b) 

Examp/e 2J. Some difficulties that arise when solving (2.1) by a conventional 

Galerkin-finite element approach can be illustrated for the simple example when c is a 

constant, d(x)=f(x) := 0, UN is uniform with spacing h, and Pi = 1, i = 1, 2, -, JV. 

In this case, the Galerkin coordinates satisfy 
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c0 = uL,    cN=uR. (2.9a,b) 

cM - 2c,. + Ci_x = ±{cM - c,..!).    «' = 1. 2, -, AT- 1. (2.9c) 
2 

where c, = £/(*,-), i = 0, 1, -, N, and 

ch P = T 
(2.9d) 

is the cell Peclet number.  The solution of this difference equation is 

_UL + J—2LUR,   i=0,l,-,N,   ^=f3 (2.9e,f) V -1N      ^   1-X' .     n .        A;     i _ 2 + P 

The computationally challenging singularly-perturbed limit occurs when p » 1. In this 

case, c,-, i = 0, 1, •-, N, oscillates (i) between uL and uR when N is odd or (ii) between 

the line joining uL and uR and 2p/N when A^ is even. These spurious oscillations are 

only eliminated when the mesh is sufficiently fine, i.e., when p is reduced to 0(1) within 

the boundary layer. 

The spurious oscillations can be eliminated from a convection-diffusion system by 

introducing a directional bias that adds artificial dissipation to the system. Although 

schemes for accomplishing this abound for convection-diffusion tsystems (cf., e.g., Fin 

[15]), Hemker's [13] Petrov-Galerkin formulation has a generality that best suits our 

present aims. To begin, recall that the Green's function G(tj) for the operator L of (2.1) 

is an element of H(j for fixed t that satisfies 

L*G =-&Gxx-[c(x)G]x+d(x)G =0,   a <x <t,t <x <b,        (2.10a) 

[Gx(t,t)]x =, := lim [Gx(t,f+8) - Gx(f ,f-8)] = -j, (2.10b) 

where an x subscript denotes partial differentiation.  With this definition, we readily show 

[13] that 

v(t) = B(G(t,-),v),   for all veH1. (2.11) 



Consider the Petrov-Galerkin problem: determine U eS$'v satisfying 

B(Y,U) = (YJ),    for all VeS{,p (2.12) 

Like S#,p, the space SQ'
P
 is a finite-dimensional subspace of H^; however, it consists of 

piecewise polynomial and exponential functions. We'll identify a basis for 50 'p as 

*P := { V/(JC), i = 0, 1, -, N, \|/fa), * = 2, 3, -, Pi, i = l,2,-,N },     (2.13) 

but defer more specific definitions of its components until (2.16), §3, and §4. 

Replacing v by V in (2.2a) and subtracting (2.12) from the result yields the ortho- 

gonality relationship 

B(V,e):=B(V,u-U) = 0,   for all V e S%*. (2.14) 

Replacing v by e in (2.11) and subtracting (2.14) from the result yields 

e{t) = B(G(t,-) - V,e),   for all Ve S?'p. (2.15a) 

With B(v,u) continuous, we confine t to ILy and obtain 

IC(XI.)I^C||G(JC,.,-)-V||II|C|II, forfl// VeSj'P, i = 0, 1, -, N. (2.15b) 

The estimate (2.15b) indicates that the pointwise error of the Petrov-Galerkin scheme 

(2.12) can be reduced by making Hellt and/or ||G(*,-,■) - V|li small. Satisfying one option 

usually leads to the other; however, trial and test functions can differ significantly for 

singularly-perturbed problems. Using (2.15), Hemker [13] argued that SQ'
P
 should be 

selected to produce good approximations of G(x,-,x). This usually implies that 50'
p 

should accurately represent the rapidly varying exponential portion of G (*,-,*) that occurs 

at x = Xi and a and/or b [16]. 

Example 2.2.  Consider the Petrov-Galerkin solution of (2.1) under the conditions of 

Example 2.1.   Using piecewise linear approximations for S%'1, choose a basis for 50' 

that exactly satisfies (2.10) when c is a constant, d := 0, and t e IlN, i.e., choose 

i/~\ -< WO = 

Vi($(x)),    if* e [*,•_!,*,■) 

V-ißOc)), if*6[*,^+i).   i=0, l,-,iVf (2.16a) 

0, otherwise 



where 

Y_,ß) = 1 - Yiß).   ViÄ) = -L-£ T—■ (2.16b,c) 
1 - e v 

The shape functions (2.16b,c) reduce to the linear functions (2.7c,d) as p -» 0 and have 

jump discontinuities at 2; = -1 as p -» °° (cf. Fig. 1). 

Using (2.6, 7) and (2.16) in (2.12) leads to the discrete system 

[1 + |ox|-)Kc1+1 - 2c,. + c,-.,) = ±{cM - CM),    i = 1. 2, -, N-l,   (2.17a) 

with 

co(z) = cothz -- (2.17b) 
z 

and the boundary conditions (2.9a,b). This scheme, which is identical to Il'in's [15] finite 

difference scheme, yields a pointwise-exact solution of (2.1) under the conditions of this 

example. 

A Petrov-Galerkin scheme such as (2.12) would require a major re-coding effort to 

incorporate into a state-of-the-art adaptive finite element software system (cf., e.g., Adjerid 

et al. [2]). This effort would, furthermore, have to be duplicated for different singular per- 

turbations. Finite element schemes typically use numerical quadrature to evaluate inner 

products; thus, instead of solving (2.5), a solution W* e Sg p is determined from 

B*(V,W*) = {VJ)*,    for all VeSg*, (2.18) 

where the * indicates that integrals are evaluated using a quadrature rule. 

Example 2.3.   Hughes [17] recognized that the diffusion needed to stabilize the 

piecewise-linear Galerkin solution of convection-diffusion problems could be added by a 

one-point quadrature rule of the form 

l 

//©</$ = 2/^),   ^ = co(£-). (2.19) 
-l z 
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This, when used with (2.18), yields the Petrov-Galerkin discrete system (2.17). The qua- 

drature rule (2.19) depends on p and approaches the midpoint rule (^ = 0) in the 

diffusion limit p -» 0 and the Radau formula fo = sgnp) in the convection limit p -> ~. 

Hughes's [17] approach only requires a change of quadrature rule and is, thus, 

simpler to implement than a Petrov-Galerkin method. Piecewise-polynomial bases (2.8a) 

are used for both trial and test spaces and the technique may be extended to higher-order 

approximations and other than convection-diffusion problems. Thus, we seek to develop a 

framework for the design of quadrature rules that are appropriate for the finite-element 

Galerkin solution of singularly-perturbed problems. 

3. Quadrature-Based Scheme for Convection-Diffusion Problems. Quadrature 

rules for convection-dominated problems are developed for problems having the form of 

(2.1) with c(x) * 0 and d(x) :=0,xe [ajb]. We begin by defining a mapping between 

the polynomial and exponential spaces and use this to obtain a result similar to (2.15) 

which motivates the approach. 

DEFINITION 3.1.   Let V{x)eS%* be given by (2.6a), with c0 = cN = 0 and let 

F: 5Q'
P
 ~* ^o'P be tne maPPinS 

V _> F(V) = V=N-£ CiVfe) +SI c/yfr). (3-D 
,=1 «=1 k=2 

LEMMA 3.1. Let 

V\x) = £ c,V(x) + £ £ c*^fix) (3.2a) 
,=0 J=l k=2 

be an element ofS%'9 that satisfies (2.18), then 

e*(x.):=uiXi)-U*(xi) = B(G^xi,-)-F(V),e*) + B,(V,U*)-B(F(V),U*) + 

(F(V)J) - (V,/)*,   for all Ve5^,   i = 0, 1, -, N. (3.2b) 

Proof.  Replacing v by e* in (2.11), adding and subtracting B(F(V),e*) to the right 
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side of the result, and using (2.18) gives (3.2b). D 

Using (3.2b), we see that the pointwise error can be reduced by (i) selecting *P to be 

a good approximation of the Green's function in order to minimize ||B(G (*,■,•) - V|| and 

(ii) designing a quadrature rule to minimize \\B*(V,W*) - B(F(V),U*)\\ and 

||(F(V),/) - (V,/)*||, for all VeS$'p. As a compromise, we'll select V and develop 

quadrature rules so that \\B*(V,W*) - B(F(V),U*)\\ vanishes for locally constant- 

coefficient problems. Thus, using (2.6c) to transform integrals on (x,'_lrx,-) to (-1,1), we 

require 

B*($kg) = B(yk£
l),   k=-l,l,2,-,p,   1=0, 1, •••,/?, (3.3a) 

where 

l 

B(v,u) = | [V($)K'(Ö + $viW(Q\d$ (3.3b) 
-l l 

and the quadrature rule has the form 

l 

-l 
= ZW*/fo). (3-4) 

k=\ 

Elemental indices i on the cell Peclet number p and the polynomial degree p have been 

omitted for convenience. 

Setting p = 1 and using (3.3) with \jf±1(£) given by (2.16b,c) and <j>±1(£) given by 

(2.7b,c) leads to Hughes' [17] one-point quadrature rule (2.19). Analysis of another exam- 

ple with p = 2 will further illustrate the technique without the algebraic complexity of the 

more general case to be developed subsequently. 

Example 3.1 (Two-Point Quadrature Rule). Bases for the trial and test spaces for a 

two-point (n = 2) quadrature rule are selected as 

*={$-i.$i.$2).   *={$-i. $i.V2). (3.5a,b) 

where 
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_ ^& 
a2 

and the scaling factor cc2 must be determined (cf. Fig. 1). The bases (3.5a) and (3.5b) 

agree except for the last component which contains the exponential contribution to the 

Green's function. The shape functions <t>2 
is shown in Fi§- L As p -» 0, \j/2(£) tends to 

the polynomial shape function (j>2(£) and as p -» °°, y2(£) becomes linear outside of an 

0(l/p) boundary layer at £ = -1. 

Setting p = 2 in (3.3) and using (3.5) yields the conditions 

l 

W\\\ + W£j[ = J \k d\,   k = 0, 1, 2, (3.6a) 

B*(täl) = B(y2£
l),   l = U2. (3.6b) 

This nonlinear system is readily solved to obtain 

f«-riVf',|T' ^ITF Wj=TFv  <"a"d) 

where 

and co(z) was defined by (2.17b). As p -* 0, (3.7) becomes Gauss-Legendre quadrature 

(5,2 = ± 1/V3, Wi = W2 = 1) and as p -» °°, (3.7) becomes Radau quadrature 

(^ = -1/3, £2 = 1, Wl = 3/2, W2 = 1/2). 

We proceed in the same manner with a general (n -point) quadrature rule, selecting 

O = { $_lf $L $2. -. *„ }.     * s t *-!• *1» ♦* -' *«-!' *» }' (3'8a'b) 

where 

v«© = 1 '  n -2- (3,8c) 
<*n 

The shape functions y3(£) and \j/4(£) are shown in Fig. 1. 



FIG. 1. Shape functions yp(£), p = 1, 2, 3, 4 (upper left, upper right, lower left, 
lower right), for p = 0, 10, °° (dash-dot, solid, dash). Functions with p = 0 correspond to 
$,®,P = 1,2,3,4. 
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The use of (3.8) with (3.3, 4) yields the system 

l 

tw&t= \^d^   k=Q,l,-,2n-2, 
i=i -l 

£*($„£') = ß (¥„£'),    l=n-l,n, 

which may be written in the more explicit form 

a„ = "n i 

J 
-1 
j^iW-idZ, 

-1 

J*»-i(W2^     if">2 

(3.9a) 

(3.9b) 

(3.10a) 

i^tf-'«*-, = #^j>©« 
/=i 

(3.10b) 

The nonlinear system (3.9a, 10) may be solved for n < 4 using a computer algebra 

system such as MAPLE. With n = 3, for example, the integration points £,, / = 1, 2, 3, 

are determined as the roots of 

15m 5 45™ 5 £2     3 
8^5 ^-^r^-f^ 8 

with 

m< 32.(^_i5_x   a3 = 

= 0, 

3mWl5 
5     675 vm3      2p"      J 4 

When rc = 4, the integration points are the roots of 

F4 _ 175m^3 _ 6*2 
* 8     S      7s 

175m7..„     6»o      105m7v.       3 

8^iH' 
with 

32 r     8 2>>     re  -- 
15m W35 

(3.11a) 

(3.11b,c) 

(3.12a) 

(3.12b,c) 
175v525m5      p"    " " 8 

While the quadrature weights Wt and evaluation points £,, / = 1, 2, •••, n, cannot be 

explicitly determined as functions of p for n > 4, apparently they tend to the Gauss- 



Legendre weights and points as p -> 0 and to the Radau weights and points as p -> ~. 

This situation is favorable to adaptive h-refinement since (as we shall show by example) 

the quadrature-based finite element method is very stable in the convective limit and accu- 

rate in the diffusion limit. 

3.1. Computational Results. We appraise the quadrature-based finite element 

method (2.18) by applying it to problems involving one ordinary and two partial 

differential systems. In each case, the Green's function used to develop the quadrature 

rule (3.4) is inaccurate; hence, we hope to show that * only has to capture the essence of 

the singular portion of the adjoint space to obtain the desired stability. We also show that 

Radau quadrature provides essentially the same benefits as more complex quadrature rules 

depending on the cell Peclet number. As in the derivation, the local degree of the polyno- 

mial approximation p is the same as the number of points „ used for the quadrature rule. 

In each example, pointwise errors are measured in the discrete maximum norm 

\e*L= max le*(*)l <3-13> 
xeYl 1N, 

where Nx is the number of elements in the coarsest mesh used to solve the problem. Spa- 

tial complexity is measured by the degrees of freedom which, with Dirichlet boundary 

data, is M according to (2.8b). 

Example 3.2.  Consider the two-point problem [13] 

-eu" - xu  = en2cos(izx) + 7txsin(7U:),   -1 < x < 1, 

M(-l) = -2,    M(1) = 0, 

which has the exact solution 

(3.14a) 

(3.14b,c) 

,    x     erf\xl^/2l) n i4d) 

The solution (3.14d) is smooth outside of a shock layer in the turning-point region near 

x=0. 
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We solved (3.14) on uniform meshes having 20, 40, and 80 elements with piecewise 

polynomials of uniform degrees p = 1, 2, 3, 4 and values of e = 10"2, 10"6, and 10"10. 

Maximum errors on the (Nl =) 20-element mesh using the finite element method with the 

p-dependent quadrature rules derived from (3.4, 8-10) and with Radau quadrature rules are 

presented in Table 1 as functions of p, N, and e. In Fig. 2, we display le*L with 

e = 10"6 as a function of the degrees of freedom for p ranging from 1 to 4 using (3.4, 8- 

10) and Radau quadrature. Similarly, with N = 80, we display \e*L as a function of e 

for p = 1 to 4 in Fig. 3. Finally, the finite element solution using Radau quadrature is 

compared with the exact solution when e = 10"6, N = 20, and p = 1 to 4 in Fig. 4. 

TABLE 1 

Maximum errors \e*Lfor Example 3.2 using integration formula (3 4, 8-10) 
and Radau quadrature on uniform N-element meshes with piecewise polynomials 
of uniform degree p. 

N 

"20" 
40 
80 
20 
40 
80 

Eqs. (3.4, 8-10) 
e = 10-2 

0.109( 0) 
0.402( -1) 
0.119(-1) 

20 
40 
80 
20 
40 
80 

0.124( -2) 
0.843( -4) 
0.533( -5) 
0.318( -4) 
0.659( -6) 
0.118(-7) 

3TQ=tü- 

0.149( Ü) 
0.765( -1) 
0.388( -1) 
0.142( -3) 
0.179( -4) 
0.224( -5) 

_ m-2' 
Radau 

£= 10 
0.182( 0) 
0.981( -1) 
0.519( -1) 

0.538( -6) 
0.223( -8) 
0.875(-ll) 

0.769( -5) 
0.483( -6) 
0.302( -7) 
0.400( -7) 
0.136( -9) 
0.302(-ll) 

0.526( -2) 
0.734( -3) 
0.988( -4) 

E = 10"10 

0.148( 0) 
0.764( -1) 
0.387( -1) 

0.167( -3) 
0.560( -5) 
0.188( -6) 
0.444( -5) 
0.341( -7) 
0.272( -9) 

0.142( -3) 
0.178( -4) 
0.223( -5) 
0.107( -4) 
0.675( -6) 
0.422( -7) 
0.400( -7) 
0.942(-ll) 
0.186(-10) 

Finite element solutions on TlNl displayed in Table 1 and Figs. 2 and 3 have no 

spurious oscillations for all cell Peclet numbers. Nodal convergence improves as p 

increases; however, there is an O(e) error that cannot be removed without proper resolu- 

tion of the solution within the turning-point region. (This phenomena also occurs with 

boundary layer problems.) The special quadrature rules (3.4, 8-10) produce solutions that 

are slightly better than those obtained with Radau quadrature, but the difference may not 
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FlG. 2. Maximum errors \e* L vs. degrees of freedom M for Example 3.2 using in- 
tegration formula (3.4, 8-10) (left) and Radau quadrature (right). Uniform mesh and order 
computations correspond to p = 1 (O), 2 (A), 3 (+), and 4 (x). 

be worth the added expense. Results presented in Fig. 4 show that the finite element- 

Radau solution has some excess diffusion when p = 1 and some spurious oscillations 

when p > 1; however, these undesirable effects are confined to the two elements contain- 

ing the turning point. The oscillations decrease in magnitude as p increases and the poly- 

nomial basis provides a better approximation to the exponential boundary layer behavior. 

Approximations would likewise improve were the mesh refined in the turning-point region. 

Global accuracy away from the turning point is very high. 

Example 3.3.   In order to appraise the method's suitability for use with transient 

problems, consider Burgers' equation 
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FIG. 3. Maximum errors le*L vs. 1/e for Example 3.2 using integration formula 
(3.4, 8-10) (left) and Radau quadrature (right). Uniform mesh computations with N - 80 
were performed with uniform degrees of p = 1 (O), 2 (A), 3 (+) and 4 (x). 

ut + uux = eUxx,   0 < x < 1,   t > 0, (3.15a) 

with initial and Dirichlet boundary conditions prescribed so that the exact solution is the 

traveling wave [18] 

u(x,t) = 

with e = 3 x 10 3 and 

0.05 

0.1g"A +0.5g~fl +g"c 

e~A + e~B + e~c 

0.25 

(3.15b) 

A= Ml(x_o.5+4.95r),   B = ±^(x - 0.5 + 0.750,   C = ^(x - 0.375). 
e e e 

(3.15c-e) 
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p=1 p = 2 

FIG 4 Finite element solution using Radau quadrature and exact solution of Exam- 
ple 3.2 with e = 10"6, N = 20 and p = 1 (O), 2 (*), 3 (+) and 4 (x). 

The cell Peclet number, needed for use with (3.4, 8-10), was determined from (2.9d) 

with c replaced by the average of the convective velocity U* at both ends of an element. 

We solved (3.15) for 0 < t < 0.5 on a uniform 80-element mesh using piecewise polyno- 

mials having uniform degrees of one to four. Temporal integration used the backward 

difference code DASSL [19] with an error tolerance of 10"10.  The exact solution and the 
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finite element solution using (3.4, 8-10) are compared as functions of x at t = 0.5 in Fig. 

5 for p = 1, 2. Results with p = 3 and 4 could not be distinguished from the exact solu- 

tion. The piecewise linear solution shown on the left of Fig. 5 has too much dissipation 

and an incorrect wave speed. The piecewise quadratic solution has remedied these 

deficiencies. 

0.5 

0.5 
x 

FIG 5 Finite element (dashed) and exact (solid) solutions of Example 3.3 at t - 0.5 
using a uniform 80-element mesh and piecewise polynomials of uniform degree one (left) 
and two (right). 

Example 3.4.  Consider the nonlinear initial-boundary value problem [20] 

eu, + u(u2-l)ux +u=euxx,   0 < x < 1,   t > 0, (3.16a) 

u(x,0) = (x +3)/2,   0<*<1, (3.16b) 

M(0,f) = 3/2,   u(l,r) = 2,   f>0. (3.16c,d) 

The solution of (3.16) tends to a steady state as f -> °° and time has been scaled to 

quickly reach this limit. An analysis when 0 < e <£ 1 [20] reveals that the steady solution 

features an interior layer near x = 0.096, a corner layer near x = 0.333, and a boundary 
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layer at .v = 1. 

Equations (3.16) were solved for t e (0,0.1] with e = 10"3 using adaptive h- 

refinement with uniform piecewise quadratic polynomials [2], an Hx spatial error tolerance 

of 0.1, and a temporal error tolerance of 10-4. The finite element solution, computed with 

(3.4. 8-10) using cell Peclet numbers as specified in Example 3.3, and the mesh con- 

structed by the adaptive procedure are shown in Fig. 6. The solution differed from one 

computed using Gauss-Legendre quadrature by less than 2 x 10~3 in strain energy; how- 

ever, the solution obtained using (3.4, 8-10) used 20% fewer space-time degrees of free- 

dom. The adaptive mesh is concentrated in layers and little element removal was neces- 

sary. Meshes track evolving layers from the smooth initial data. The solution obtained 

with Gauss-Legendre quadrature performed well here because h-refinement occurred 

quickly as layers developed. 

0 0.5 0      0.2    0.4    0.6     0.8 

FIG 6 Finite element solution of Example 3.4 at t = 0.2 using the quadrature rules 
(3.4, 8-10) with adaptive h-refinement and p = 2 (left) and the mesh used for the adaptive 
computation (right). 
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4. Quadrature-Based Scheme for Reaction-Diffusion Problems. We develop qua- 

drature rules for reaction-diffusion problems of the form of (2.1) with c(x) := 0 and 

d(x) > 0 using the approach described in §3. The analog of Lemma 3.1 has a slightly 

more complex form. 

LEMMA 4.1.  Let ® of (2.8a) and 

H := {Tl/OO, i = 0, 1, -, N, Tifa), k = 2, 3, -, Pi, i = 1, 2, —, iV },       (4.1) 

foe fwo bases ofSj['v. Let 

satisfy (2.18) and 

W\x) = £ c,V(x) + £ | c^fr) (4.2a) 
;=0 i=l fc=2 

tf *(x) = £ c,V(*) + £ I q*nf(*). (4-2b) 
i=0 i=l *=2 

27ren 

e*(x.) := u{Xi) _ ü»WsB(G(i|;)-TO')+B.{V.V,)-fl(W) 

(F(V),/)-(V/)*,   for all VeS%*,   i = 0, 1, -, N. (4.3) 

itemarfc. The elements of H will be chosen to be identical to those of 4» except for 

Tlf' which will differ from <>f', p, > 1. by a scaling factor, / = 1, 2, -, N. The scaling is 

necessary to avoid a constant difference between exact and numerical inner products. 

Proof.  A direct computation following the steps of Lemma 1 yields the result. D 

As a function of x, the Green's function in this case has 0(>/i) boundary layers on 

both sides of x=t and becomes unbounded as 0(1/Vi) as e -* 0 [16]. Requiring 

||ß*(V,W*)-ß(F(V),C/*)|| to vanish for locally constant-coefficient problems and 

transforming via (2.7a) to the canonical element (-1,1), we obtain 

£.(**,*/) «*(**.<!/).   k,l=-l,\,2,-,p, (4.4a) 
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where now 

B(v,u) = J W&W® + ^-HQu<£)]d$,   a = h -\ß. (4.4b,c) 
-l 

For this self-adjoint problem, we select a symmetric quadrature rule of the form 

-l 

int(nl2) 

*=1 

(4.5) 

where 0 = £0 < 5i < - < 5i«r (n/2) ^ * a1111 '"'(*) denotes the integer part of x'   The mle 

is to have precisely n points, so W0 is zero when w is even. 

Being unable to obtain results of the generality of those in §3, we examine specific 

cases with p = 1, 3, and 5. Quadrature rules having the form of (4.5) were either incom- 

patible with (4.4) or produced integration points outside of [-1,1] with even values of p. 

4.1. Piecewise-Linear Approximation. With a linear polynomial, the bases for the 

trial and test spaces are selected as 

where $k, k = -1, 1, are given by (2.7b,c) and 

(4.6a,b) 

V±i© 
_ sinhaq ± £)/2 

sinha 
(4.6c) 

Substituting (4.6) into (4.4a) and using (4.5) yields the independent relations 

X0 = — tanh(o/2),   X2 = — [coth(o/2) - 4"tanh(a/2)] 

where 

X, = I%'d$ 
,      bit {nil) . . 

jk=i 

(4.7) 

(4.8) 

Combined use of (4.8) and (4.7) indicates that there is no quadrature rule with n = 1 satis- 

fying (4.7).  A two-point quadrature rule exists with W0 = 0 and 
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W, = 1,   £i = Vcoth2c/2 - 4/a2. (4.9) 

(Scaling of W{ is arbitrary and we choose unity for convenience.) In the limits as c tends 

to zero and infinity, ^ approaches V2/3 and 1, respectively. The former case produces an 

order one quadrature rule and the latter case yields the trapezoidal rule (or the two-point 

Lobatto formula). 

4.2. Piecewise-Cubic Approximation.   The bases of the approximation spaces for 

cubic trial functions are selected as 

6 := {$_lt $!, $2. fe }• H := {$_!, $i, $2. a3$3}. * := {$-1» *i» V2. V31.(4.10) 

where the scaling a3 is to be determined. Continuity considerations require \|/,(±1) = 0, 

i = 2, 3. Additionally, $,-(£), / > 2, is an odd or even function of £ when i is, respec- 

tively, odd or even (cf. (2.7d)). These restrictions and the use of (4.4a) with k = 2, 

/ = -1, 1, 3, and k = 3, / = -1, 1, 2, imply that \jir2 is even and \j/3 is odd. Thus, 

feß) = ß2[l - Vi© - V-i©].   *3© = ßsß - *l(Ö + V-i®]. (4-U) 

Imposing conditions (4.4a) and solving the resulting system for X0, X2, ß2, o,z, X4, 

ß3, and X6 while using (4.11) and 

-*"±i + ^-*±i = 0, (4-12) 

we find 

1 8 
X0 = 2,   X2 = 2/3,    ß2 = j ,   a3 = 5(l-ß2+—), 

^6(1-}^)^) 
-l 

C 

(4.13a-d) 

X4 = m4 = f (2ß2 - 1 - %   ß3 = -^ T^ •       (4-13^ 

1-3/#!©«/$ 
-l 

X6 = m6 = |[-1 + i| + 3(1 - ^)m4 - 4^|ß3a3]. (4.13g) 



We may use (4.8) to write (4.13a,b,e,g) in the more explicit form 

int(n/2) int(n/2) \ 
W0 + 2   £   Wk=2,       £   Wk^ = -, (4.14a,b) 

Jk=i *=i 

S  w*^ = -7-«     S  w^ = l"- (4-I4c'd) 

A quadrature rule satisfying (4.14) with n = 4 and W0 = 0 exists but has t,2 outside [-1,1] 

and, hence, is useless for our application. When n = 5, (4.14) describe a one-parameter 

family of quadrature rules that we specify by selecting £2 = 
L  In this case' 

g   _ o     £2 - m4"m6      F, = 1 (4.15) 
*>-°*   ^" 2/3-«4*   ^2      ' 

1/3-W2 3m4
2-2m6 

W0 = 2(l-Wl-W2),    ^ = —^,    W2=6m4_3m6 + 2~        (4-16) 

With all integration points within [-1,1], we find the order-five formula 

as a -» 0. As o -> ~, (4.15, 16) give 

(4.17) 

S0 = 0,   ^ = -1,   ^2=1,    W0 = 0,   W1 = l,    W2 = 0 (4.18) 

which is the reduced two-point Gauss-Legendre formula. A seven-point quadrature rule 

for quintic polynomials is not reproduced here due to its algebraic complexity [21]. It has 

properties that are similar to (4.15, 16). For example, it approaches a reduced four-point 

Gauss-Legendre formula as a -» °°. 

These surprising results are difficult to understand. Based on the analysis of §3 and 

§4.1, we would have expected to find formulas that approach Gauss-Legendre quadrature 

as a -^ 0 and Lobatto quadrature aso->». Indeed, we shall show in §4.3 that Lobatto 

quadrature rules produce stable and accurate results for all values of a. However, unlike 

the Radau rules discussed in §3, the Lobatto rules apparently do not follow from the 
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formalism of §4.1 and here. 

4.3. Computational Results. Finite element solutions are compared using the special 

formulas derived in §4.1 or §4.2 and Lobatto quadrature. The Lobatto formulas are 

chosen to have p + 1 points for piecewise polynomial approximations of degree p. 

Example 4.1.  Consider the two-point problem [16] 

-e2u" + (x2 + e)u = (x2 + e)(l + simu) + eVsimtx,   0 < x < 1,       (4.19a) 

M(0) = M(1) = 0, (4.19b,c) 

which has the exact solution 

u(x) = 1 + sin7ix - uH{x) (4.19d) 

where 

Ua(x) = I {(1 - e-y2£)W{xl<i)e-x212* + [1 - e-meW(<m)]e-<l-x2)/2£} 
HK)

     erf(VT7i) 
(4.19e) 

and 

W(z) = ez2erfcz. (4-19f) 

This solution features boundary layers at x = 0 and 1.  The boundary at x = 0 is nearly a 

second-order turning point. 

We solved (4.19) using the finite element method with the special quadrature rules 

(4.5) on uniform meshes having 10, 20, 40, and 80 elements with piecewise polynomials 

of uniform degrees p = 1, 3, 5. Maximum errors on the 10-element mesh are presented 

for e = 10-3, 10-5, and 10-7 in Table 2. Similar results appear in Table 3 for computa- 

tions performed with Lobatto quadrature. A display of \e*L as a function of the degrees 

of freedom and e is presented in Fig. 7 for the finite element-Lobatto solution. Results 

with the special quadrature rule (4.5) had a similar behavior. Finally, the exact and finite 

element-Lobatto solutions with e = 10"5, N = 10, and p = 1 to 4 are compared in Fig. 8. 



TABLE 2 

Maximum errors \e*\00for Example 4.1 using integration formula (4.5) on uni- 
form N-element meshes with piecewise polynomials of uniform degree p. 

p N e = 10-3 io-5 IO"7 

1 

10 
20 
40 
80 

0.269( -2) 
0.371( -3) 
0.254( -3) 
0.851( -4) 

0.486( -6) 
0.143( -7) 
0.149( -7) 
0.151( -7) 

0.487(-10) 
0.143(-11) 
0.150(-11) 
0.15K-11) 

3 

10 
20 
40 
80 

0.437( -2) 
0.382( -4) 
0.272( -6) 
0.127( -7) 

0.477( -3) 
0.339( -6) 
0.11K-8) 
0.132( -9) 

0.488( -5) 
0.137( -9) 
0.519(-10) 
0.319(-10) 

5 

10 
20 
40 
80 

0.386( -4) 
0.172( -6) 
0.172(-10) 
0.972(-13) 

0.905( -3) 
0.926( -6) 
0.401 (-12) 
0.597(-12) 

0.976( -5) 
0.150( -9) 
0.529(-10) 
0.195(-10) 

TABLE 3 

Maximum errors \e*\xfor Example 4.1 using Lobatto quadrature on uniform 
N-element meshes with piecewise polynomials of uniform degree p. 

p N e = IO-3 io--5 IO"7 

1 

1U 
20 
40 
80 

0.777( -2) 
0.201( -2) 
0.546( -3) 
0.140( -3) 

0.998( -6) 
0.297(-10) 
0.156(-10) 
0.39K-11) 

0.999(-10) 
0.621(-14) 
0.155(-14) 
0.666(-15) 

2 

10 
20 
40 
80 

0.322( -2) 
0.475( -3) 
0.468( -4) 
0.361( -5) 

0.998( -6) 
0.947(-10) 
0.782(-ll) 
0.195(-11) 

0.999(-10) 
0.310(-14) 
0.310(-14) 
0.222(-14) 

3 

10 
20 
40 
80 

0.121( -3) 
0.109( -4) 
0.381( -7) 
0.702( -9) 

0.998( -6) 
0.628(-10) 
0.444(-14) 
0.577(-14) 

0.100( -9) 
0.488(-14) 
0.621 (-14) 
0.288(-14) 

4 

10 
20 
40 
80 

0.118(-3) 
0.636( -6) 
0.769( -8) 
0.328(-10) 

0.995( -6) 
0.602(-10) 
0.888(-14) 
0.113(-13) 

0.100( -9) 
0.999(-14) 
0.643(-14) 
0.115(-13) 

5 

10 
20 
40 
80 

0.113(-3) 
0.113(-6) 
0.156(-10) 
0.142(-13) 

0.985( -6) 
0.528(-10) 
0.999(-14) 
0.126(-13) 

0.999(-10) 
0.106(-13) 
0.177(-13) 
0.577(-14) 
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FIG 7 Maximum errors \e*\„ vs. degrees of freedom M (left) and vs. 1/e (right) 
for Example 4 1 using Lobatto quadrature. Uniform mesh and order computations 
correspond to p = 1 (O), 2 (A), 3 (+), 4 (x), and 5 (G). 

As with convection-diffusion systems, solutions on TlNl, presented in Tables 2 and 3 

and Fig. 7, have no spurious oscillations for all values of a. Results using Lobatto qua- 

drature are either comparable or superior to those obtained by the special quadrature rules 

derived from (4.5); thus, there appears to be little advantage of using the more complex 

a-dependent rules. Results presented in Fig. 8 show that boundary layer errors are 

confined to one element when a is large. The piecewise-linear solution has no oscillations 

but higher-order solutions have spurious oscillations within layers that decay in amplitude 

with increasing p. 



p-1 P = 2 

FIG 8 Finite element solution using Lobatto quadrature and exact solution of Exam- 
ple 4.1 with £ = 10"5, N = 10 and p = 1 (O), 2 (*), 3 (+) and 4 (x). 

5. Two-Dimensional Problems. To have maximal impact, the specialized, Radau, 

and Lobatto quadrature rules developed and described in §3 and §4 should be applicable 

to multi-dimensional transient and steady singularly-perturbed partial differential systems. 

We appraise their suitability in this regard by applying a tensor product of the one- 

dimensional quadrature rules to three two-dimensional elliptic problems. 
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Example 5.1.   Consider the convection-diffusion equation 

-eA« + 2ux + uy =f(x, y),   (x, y)e (-1,1)x(-1,1), (5.1a) 

with f(x,y) and the Dirichlet boundary conditions selected so that the exact solution is 

u(xy) = (1 _ e-(l-xVe)(1 _ e-d-yV^cosTt^ + y). (51b> 

This solution features 0(e) boundary layers at x = 1 and y = 1. 

We solved (5.1) with e = 10'3 and 10"6 using the finite element method with a tensor 

product of the quadrature rules (3.4, 8-10) on uniform square meshes having 8, 16, and 32 

square elements per edge and piecewise bi-polynomial approximations of uniform degrees 

one to four. The maximum pointwise errors measured on the coarse mesh are presented 

in Fig. 9.  Solutions are computed without oscillations for all combinations of e and N. 

Example 5.2.  Again consider (5.1a) with/(x,y) = 0 and the boundary conditions 

u(x,0) = l,   u(x,l) = 2,   0<*<1,   u(0,y) = 2,   u(l,y) = l,   0<y< 1.(5.2) 

When e is small relative to unity, the solution features a sharp wave front that propagates 

across the domain at an angle of approximately 27° with respect to the positive x-axis. 

We solved (5.1a, 2) with e = 10"3 using the tensor-product quadrature rules (3.4, 8- 

10) on a 20x20 uniform mesh and piecewise bi-polynomial approximations having 

degrees one through four. Solutions are displayed in Fig. 10. Like Brooks and Hughes 

[22], we find solutions with piecewise bilinear approximations to be overly diffusive. 

Higher-order solutions have less diffusion, but have some spurious oscillations near the 

wavefront that decrease in amplitude with increasing p. Streamwise upwinding [22] has 

been used with low-order approximations to remove excessive diffusion near fronts. 

Perhaps a similar procedure could be developed to further reduce the oscillations associ- 

ated with higher-order approximations. 

Example 5.3.  Holland [23] suggested the resonance problem 

-EAU +xux+yuy =0,   -2<x<l,   -3 < y < 3. (5.3a) 
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FIG. 9. Maximum errors l<?*L vs. degrees of freedom M for Example 5.1 with 
e = 10"3 (left) and 10"6 (right) using a tensor product of the quadrature rules (3.4, 8-10) 
on uniform square meshes with piecewise polynomials of uniform degree p = 1 (O), 2 
(A), 3 (+), and 4 (x). 

K(JC,-3) = 3,    K(JC,3) = 5,   -2 < x < 1, (5.3b,c) 

M(1,V) = 4,   M(-2,V) = 6,   -3<V<3. (5.3d,e) 

The usual singular-perturbation theory would indicate that the solution of (5.3) has boun- 

dary layers near the edges and is constant in the interior of the domain; however, this 

theory cannot determine the constant's value. Grassman and Matkowsky [24] used a vari- 

ational approach to determine the unknown constant as a weighted average of the boun- 

dary data at points that are closest to the origin. For the prescribed data and small values 

of e, there will be boundary layers except near (1,0), which is the closest point to the ori- 
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FIG. 10. Solution of Example 5.2 with e = 10"3 on a 20x20 uniform mesh with 
piecewise bi-polynomial approximations of degree p = 1 (upper left), 2 (upper right), 3 
(lower left) and 4 (lower right). 



gin.  The solution in the interior of the domain will asymptotically be u (1,0) = 4. 

Holland [23] suggested this problem to test numerical techniques because of its 

numerous computational difficulties. A transient embedding of (5.3a) in a parabolic prob- 

lem [2] converges at an exponentially slow rate in e. When solving the steady problem 

(5.3), this difficulty gives rise to ill-conditioned discrete systems for large cell-Peclet 

numbers. Thus, direct solution techniques will be sensitive to round-off error accumula- 

tion and iterative solution strategies will quickly converge to a constant interior solution, 

but take exponentially long to find the correct value. 

We solved (5.3) with E = 10"3, using adaptive h-refinement [2] with piecewise bi- 

polynomials of degrees one through four. The solution with p = 1 is shown in Fig. 11. 

Solutions did not display any spurious oscillations. 

6. Discussion. We have developed a framework for applying the finite element 

method with high-order approximations to singularly-perturbed differential systems. The 

method utilizes symbolic techniques to construct quadrature rules for a class of singular- 

perturbation problems and, herein, we consider convection-diffusion and reaction-diffusion 

systems. Quadrature rules for convection-diffusion systems tend, as expected, to Gauss- 

Legendre and Radau integration, respectively, as the cell-Peclet number tends to zero and 

infinity. Quadrature rules are less understood for reaction-diffusion systems. Formulas for 

odd-degree polynomial approximations produced stable results but appeared to be sub- 

optimal. Formulas for even-degree polynomials had evaluation points off the element. 

Use of Radau and Lobatto quadrature rules worked extremely well for, respectively, 

convection- and reaction-diffusion problems. Large errors were confined to elements con- 

taining boundary or interior layers for all meshes, orders, and singular-perturbation param- 

eters tested. This is in contrast to the Radau- and Lobatto-based collocation methods of 

Ascher and Weiss [25] who found oscillations when boundary layers were not adequately 

resolved.  Furthermore, nodal convergence of the Radau- and Lobatto-based finite element 
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FIG   11.   Solution of Example 5.3 with e = 10"3 using adaptive h-refinement on an 
initial 10 x 10 uniform mesh with piecewise bilinear approximations. 

procedures appears to be, respectively, at rates of h2P'1 and h2P in the diffusion limit. 

Thus, nodal superconvergence would seem to be present for both quadrature rules when 

p > 2. Global rates of hP are optimal in energy in the diffusion limit but are, as yet, unk- 

nown in the singularly-perturbed limit. Observed accuracy is so high in this case that esti- 

mation is not possible. There is little apparent advantage to using the more complex 

integration procedures of §3 and §4, especially with reaction-diffusion problems. The qua- 

drature framework (§3 and §4) could, of course, be useful with other singularly-perturbed 

problems. It additionally provides insight as to why Radau quadrature is successful with 

convection-diffusion problems. 



Numerical evidence suggests that the quadrature-based methods work more robustly 

than anticipated. Thus, for example, methods based on a singular-perturbation analysis of 

a constant-coefficient two-point boundary value problem provide stable and accurate solu- 

tions of two-point problems involving turning points and of partial differential equations. 

Having stable high-order methods, it becomes possible to use efficient adaptive hp- 

refmement procedures and we intend to investigate this possibility. Several aspects of the 

approach are in need of additional analysis before this can be done. A posteriori error 

estimates, used to guide adaptive enrichment, are needed for each method and quadrature 

rule. It is likely that such estimates can be developed by p-refinement procedures [10]. 

Indeed, Biswas et al. [26] used a Radau polynomial to construct error estimation formulas 

for hyperbolic conservation laws. 

A priori error estimates are also needed for the various methods in the different 

parameter regimes characterized by, e.g., the cell-Peclet number. Streamwise upwinding 

should also be investigated as a possibility for reducing oscillations near nonuniformities 

that are oblique to the computational mesh (cf. Example 5.2). Developing such formulas 

for high-order approximations could be a challenging proposition since streamline curva- 

ture may be necessary to maintain high order. 
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